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Universal ionic valence velocity scaling
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This work combines the usual empirical formula for the effective charge of a beam penetrating a target with
the Bohr charge equilibrium condition. The result is a logarithmic scaling law, which provides the rms valence
velocity and virialized ionization potential for any atomic spe@ext any charge states9Q<Z. Comparisons
with Thomas-Fermi modeling and the Bohr formula for hydrogenic valence velocities are performed.
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. BACKGROUND dE —47Te4Q2
ax- 2 MlnfAs], 2
Two principal atomic modeling systems, the Bohr atom Mev

and the Thomas-Fermi model, treat atomic electron distribu- ) . ) )
tions in two distinct manners each, with different regimes of" Which ny, is the number density of bound electrons in the
applicability. A bridge between the two systems can be found@rget andA, is the Coulomb logarithm. Brown and Moak
in an empirical formula that approximates the effectiveS€lecteda=1.034 and =0.69 for an optimal form of Eq(1)
charge state of an ion beam penetrating a cold target. TH@F modeling the range of incident ion beams in targets. A
nature of this formula will be investigated here in detail. In CUrious yet unaddressed detail of the fitted parameters is that
particular, combining the effective charge formula with an
equ!librium chqrge condition due to Bohr will produce a gen- L —1.035~a. (3)
eralized modeling scheme for valence electron energetics. 213

As an ion beam is deposited into a target, its constituent o . )
ions can be Characterized by an average Charge state tﬁélﬂth the SUbStItUtIOﬂfEZb/3 a useful |nterpretat|0n Of the
likely represents an equilibrium value at each instant of théerm Z'ac as the slightly corrected Thomas-Fermi velocity
beam’s journey. The kinetic balance responsible for estabPecomes transparent.
lishing this charge equilibrium was specified by Boh}. He

surmised that a beam’s equilibrium ionicity at each point Il. VALENCE SCALING
during its penetration into a target would be that ionic charge ) ,
Q at which the rms valence electron velocity,(Z,Q) It was observed that the effective chaf@év,Z) given by

Eq. (1) closely represented the actual average ionic charge of

into the nature of the atomic energetic balance of an inciderf’® Peam[2]. After traversing a target and emerging at a
beam, Bohr'sansatzdoes not immediately provide a way to velocity v, an ion beam exh|b|t'ed an average charge that was
quantify the beam’s instantaneous charge state. well represented by the effective charge formula. Brown and
Apparently distinct from the Bohr condition is the use of Moak noted that this concurrence was “interesting to ob-
empirical formulas that provide the effective charge state of £67V&;” but no substantial exploration was conducted. Sup-
beam penetrating a cold target. The most common applicd20S€ that the effective charge state given by s indeed
tion of such formulas is to provide an effective beam charge&onSistent with the equilibrium charge state imposed by the
state for energy deposition calculations. In general, a beam80Nr condition. In other words, the charge state given by the
instantaneous effective charge stqt&,Z) can be indepen- effective charge for_mula ought to be_nearly the same as the
dent of the target species and is a function only of the beam’€harge state at which the chqractenstlc_ valence velocity is
velocity v and atomic numbeZ. Owing to the work of equal to the beam velocity. This connection between the two
Brown and Moak{2] is a particularly successful empirical models, if valid, will produce an interesting result after a

formula for ,Z). It can be written as simple substitution. A o
Qv.2) The Bohr charge equilibrium condition can be stated as

) v~v,(Z,Q), (4)

roughly equals the beam velocity While providing insight

Q(u,2)~z(1—aexp{ ?U

Z' aC

oY)

where v,(Z,Q) is the rms valence velocity of an ion of
atomic numbe¥ at a charge stat®. Exploiting the putative
consistency between the Bohr model and the empirical fit of
Brown and Moak, this substitution can be applied to &g.

producing
) . (5)
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wherea is a parameter near unity afids a parameter whose
value is near 2/3.
The chief purpose of Ed1) is to provide a value for the
incident ionic charge) appearing in the Bethe formula for
—0,(Z,Q)
Q~Z|l-aexp——=—

ZZb/3aC

beam stopping poweatE/dx [3]. The Bethe formula depends
on the square of this chargé]
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Solving forv,(Z,Q) gives 0.7 '
00(Z,Q)~ZPRacin| o . ©
Z- Q —— Measured rms valence velocity
T 05 L — — - Calculated using a=1.034, b=1
This formula contains the bold implication of providing the “g
rms valence electron velocity of any speciéat a charge § sl
stateQ. The empirical fit for a beam’s effective charge state <
is seen implicitly to contain generalized information about §
the scaling of ionic valence levels. Given the universality of = %3 |
the original formula in Eq(1), the inverted form should also % Silver—s /

enjoy application to a wide range of atomic species and$ 0.2
charge states. Furthermore, E6) can be used in principle

to form a virialized ionization potentidl(Z,Q) of any spe- 04 b
cies at any given charge state. In the nonrelativistic limit, the
ionization potential can be taken from the valence rms ve-

locity v,(Z,Q) by 0 10 20 30 40 50 60 70 80
v lonic Charge State

1 "
_ = 2 FIG. 1. Calculated and measured rms valence velocities for all
1(2,Q) 2 Me,(Z,Q), ™ charge states of silver and lead.

or relativistically by IlI. COMPARISON TO THOMAS-FERMI MODELS

®) The Thomas-Ferm(TF) treatment of atomic and ionic
energetics can be used to model the scaling of ionization

potential with charge state. The results given by the TF

model will be compared with the logarithmic scaling intro-

duced here. The total TF binding eneigyg of the electrons

in a neutral species scalesz%3[6]. For an ionized species,

7 1\2 this scaling is adjusted by a te@(Z,N), which is a function

Z—QD , (9)  of the degree of ionization

1(Z,Q)=(1-s)mec?,

with s?=1—[v,(Z,Q)/c]? andm, being the electron mass
[5]. The explicit form for the nonrelativistic valence ioniza-
tion potential in Eq(7) is

I(Z,Q)%Z“b/?‘Ry(ln

713
with Ry= $m,a?c?. Err(Z,N)=Z™e(Z,N), (10)
_ _ _ where N is the number of bound electrons and the charge

A. Calculations with the scaling state Q of the ion isZ—N [7]. The ionization potential

The information provided by the general yet surprisingly!(Z,Q) of an ionic species can be determined from total
compact forms of Eqs(6)—(9) will be applied to several e€lectronic binding energies by
cases to investigate the value of these alleged relationships.
In the following calculations, the parametemwill be set to 10° . ' ' - - . . '
1.034, the value chosen by Brown and Moak. The valule of
will be set to unity throughout, maintaining the presence of 10° |
the unadjusted Thomas-Fermi velocity in the equations. Fig-
ure 1 displays the rms valence electron velocities for lead [
and silver for each of their respective charge states extracteg
from the measured ionization potentials. Also shown are thes _ .
valence velocities calculated from E@). Aside from shell
effects, the scaling of the measured valence velocities wit
charge state is represented with impressive reliability.

Figure 2 displays the measured ionization potentials of§ 4
lead for all charge states along with the ionization potentials 10’ ;
calculated with the logarithmic scaling. Across approxi- /
mately four orders of magnitude of energies, E—(9) 10° F
well reproduce the measured ionization potentials, in both
relativistic and nonrelativistic regimes. Note the importance 4+ . . . . . . . .
of thea parameter in Fig. 2. At low charge states the value of 0 o2 3°Lea g C:nge St:tg 60 70 8
a influences the logarithmic numerator and noticeably in-
creases the calculated ionization potential compared to cal- FIG. 2. Calculated and measured ionization potentials for all
culations witha=1. charge states of lead.

Measured
---- Calculated, a=1; b=1
—-— Calculated, a=1.034; b=1

ization:Eotenti
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propriate functional dependence on atomic numbBefhe
logarithmic scaling exhibits appropriat dependence and

— ¥:as“’?d performs much more effectively in this regime. However, as
10° L scaling for Q<<Z 1 . . . . . .
—-— TF scaling for N<<Z ) is evident from Fig. 3, the functional variation of the two
=~~~ New logarithmic scaling i models with charge stat® are very similar. This can be
< 40t - understood by examining the associated formulas. Equation
% (12) varies roughly as the 7/3 power @ On the other hand,
5 the valence velocity in Eq6) can be approximated fa@
g <Z by
S
g
5 10* vv(z,Q)~22’3ac( -1/, (14)
Z-Q
10" (with a=b=1 for clarity). With continued reduction this
gives
10° ‘ ' ' ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 70 Qac
Gold Charge State UU(Z,Q)N 21/3 . (15)
FIG. 3. Calculated and measured ionization potentials for all
charge states of gold along with Thomas-Fermi modeling. Thus, in the low-ionicity limit, the logarithmic formula gives
a valence velocity that scales linearly with and thus a
1(Z,Q)=Erpg(Z,N)—Erp(Z,N—1). (11)  Virialized ionization potential that scales as the square of

charge state, in rough agreement with the 7/3 power scaling
In practice, the scaling functioe(Z,N) is not able to be of the TF model in this regime.
stated analytically for the entire range okN<Z. Analyti-

cal approximations are available for the two caBebeing  |v HYDROGENIC CONSISTENCY AND A LOGARITHMIC

very close toZ andN being near unity. Following Ref7], RELATIONSHIP
for N not much less tharZ (ions of low charge stat€ ) ) o
<Z), the total binding energy scales as Consider the special case of a hydrogenic ion with

=Z—1. As demonstrated in Fig. 1, E¢6) can be used to
Ee(Z,N)~0.762Z3-0.0473Z—N)"", (120  model the hydrogenic electron’s rms velodisee the veloci-
ties calculated fofQ =46 for silver andQ =281 for lead. The
in which the energy is given in atomic units. Fbl<Z generalized formula for the hydrogenic rms valence velocity
(highly charged ionsthe TF binding energy is approximated v, according to the logarithmic scaling is
b
g vh=0,(2,Q=2-1)~Z?3acIn[aZ]. (16)

1/3
ETF(Z,N)*1-14ZZ<§N) —0.48%N*". (13)  But, a hydrogenic orbital system also should be well de-
scribed by the Bohr-atom scaling in which the orbital veloc-

By employing these expressions in Hdl) the ionization ity ve varies linearly withZ,
potential can be approximated for an arbitrarily charged spe- 7 1
cies. Note that Eq(12) will produce an ionization potential, v~ sac. (17)

which 'ﬁga functlon qnly OD.:Z._ N since the leading term Are these two modeling systems consistent? If this connec-
0.76Z ™ will cancel in application of Eq(11). Dependency tion between the logarithmic model and the Bohr atom
on Z can be added for a better approximation by incorporat-

. . should be valid, then an interesting mathematical relation-
ing terms that are expansions@#1—N/Z (see Ref[7] for ship will result. Equating the hydrogenic rms valence veloci-
complete details

Figure 3 displays the ionization potentials of gold at aIItles obtained by the two different methods gives, véitab

charge states calculated with the Thomas-Fermi scaling. For 1 for clarity,

comparison are shown the measured values and the results 7%BacIn[Z]~Zac, (18)
obtained using Eqg6)—(9). For high charge statd$¢<Z the

TF model's scaling reproduces well the empirical trends. It isynich is to say

curious to note that the TF model follows a different trajec-

tory along the shell structure trends than does the logarithmic In[Z]~Z3. (19
scaling, yet both capture important characteristic features.

The functionalities of the two models in this regime areThus, an implication of hydrogenic consistency is an ap-
clearly distinct, as expected from the difference between Eqoroximation to the logarithmic function. This approximation
(13) and the virialized Eq(6). At low charge states the ef- to the natural log is indeed good farin the range of the
fectiveness of the TF model suffers from the absence of apatomic numbers greater than a few.
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V. INTERPRETATIONS AND DIRECTIONS charge parameter. This provides a more physical explanation
f the success of the formula of Brown and Moak has, which
een viewed simply as a fit to data.

At least one term in the empirical fit of Brown and Moak
can now be interpreted not just as a fitting parameter but as
representative of the physics of atomic electron distributions.

These previously unexplored applications of an inverte
effective charge formula are perhaps most useful in the
atomic scaling physics that they imply. A clear justification
of the success of this logarithmic scaling from first principles
is not apparent. The analyses that generated the form of quhe role of the parametex accounts for the fact that the
(1) treated the functional development only empirically.

However, the model’'s consistency with Bohr scaling Iow_valgnce electrons in a negtral atom have a nonzero rms ve-
ionicity T’F modeling, and measured valence energie’s indiloc.lty' If the factora were S|mply unity, £q(9) woyld'glvt_a a
cate that a meaning,ful physical representation is being arli.Inlt argumgnt to the logarithm and thus a vanishing ioniza-
ticulated. t|9n potential for neutral atomsq=.0). Settinga tq a value
From the consistency demonstrated here, we may als%IIghtIy greater than 1 corrects th's _tr_end. For higher charge
draw some conclusions about the physics of beam chargsetatesQ’ the factora becomes insignificant.
evolution. It appears that the Bohr equilibrium condition and
the_empirical formula of Brown and Moak are roughly _ ACKNOWLEDGMENTS
equivalent statements of average beam charge state. This
joins two paradigms of beam charge evolution that have gen- | thank Roger Bangerter of LBNL, who introduced me to
erally been treated as distinct. The success of(Bgrein-  the problem of beam charge evolution, and Professors Per
forces the notion that the charge state provided by (BEg. Peterson and Stan Prussin of Berkeley for excellent research

represents an actual ionic charge and not just an effectivadvice.
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